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in compressible boundary layers

subject to free-stream vortical disturbances

Ph.D. student and post-doc
researchers:
Samuele Viaro
Dr Eva Zincone
Dr Claudia Alvarenga

Supervisor:
Dr. Pierre Ricco

December 17, 2018

AFOSR Grant FA9550-15-1-0248

Effect of Porous Surfaces on Compressible 
Boundary Layers Perturbed by Free-Stream 

Disturbances

The University of Sheffield
Department of Mechanical Engineering

DISTRIBUTION A:  Approved for public release; distribution unlimited



1 Presentations, conferences and archival journal papers

The research results have been presented at the following conferences and meetings:

• AFSOR hypersonic portfolio review, BICC, Arlington, Virginia, July 2018,
• AFSOR hypersonic portfolio review, NASA Langley, July 2017,
• AFSOR hypersonic portfolio review, BICC, Arlington, Virginia, July 2016,
• 2018 Ricco, P. Goldstein, M.E. Leading edge receptivity of a supersonic boundary layer to

free-stream acoustic and vortical disturbances Proc. 12th Euromech Fluid Mech. Conf.,
Vienna, Austria, 9th-13th Sept..

• 2018 Viaro, S. Ricco, P. Neutral stability curves of unsteady Görtler instability Proc. 12th
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• 2017 Viaro, S. Ricco, P. Compressible Görtler vortices excited by free-stream vortical distur-
bances, 16th Euromech European Turbulence Conf., Stockholm, 21st-24th August.

• 2017 Marensi, E. Ricco, P. Wu, X. Nonlinear evolution of unsteady streaks in a compressible
boundary layer subject to free-stream vorticity, British Applied Mathematics Colloquium,
Univ. Surrey, 10th-12th April.

• 2017 Viaro, S. Ricco, P. Linear evolution of compressible Görtler vortices subject to free-
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2 Introduction

The perturbations triggered by free-stream vortical disturbances in compressible boundary layers
developing over concave walls are studied numerically and through asymptotic methods. We em-
ploy an asymptotic framework based on the limit of high Görtler number, the scaled parameter
defining the centrifugal effects, we use an eigenvalue formulation where the free-stream forcing
is neglected, and solve the receptivity problem by integrating the compressible boundary-region
equations complemented by appropriate initial and boundary conditions which synthesize the in-
fluence of the free-stream vortical flow. Near the leading edge, the boundary-layer perturbations
develop as thermal Klebanoff modes and, when centrifugal effects become influential, these modes
turn into thermal Görtler vortices, i.e., streamwise rolls characterized by intense velocity and tem-
perature perturbations. The high-Görtler-number asymptotic analysis reveals the condition for
which the Görtler vortices start to grow. The Mach number is destabilizing when the spanwise
diffusion is negligible and stabilizing when the boundary-layer thickness is comparable with the
spanwise wavelength of the vortices. When the Görtler number is large, the theoretical analysis
also shows that the vortices move towards the wall as the Mach number increases. These results
are confirmed by the receptivity analysis, which additionally clarifies that the temperature per-
turbations respond to this reversed behavior further downstream than the velocity perturbations.
A matched-asymptotic composite profile, found by combining the inviscid core solution and the
near-wall viscous solution, agrees well with the receptivity profile sufficiently downstream and at
high Görtler number. The Görtler vortices tend to move towards the boundary-layer core when
the flow is more stable, i.e., as the frequency or the Mach number increase, or when the curvature
decreases. As a consequence, a region of unperturbed flow is generated near the wall. We also
find that the streamwise length scale of the boundary-layer perturbations is always smaller than
the free-stream streamwise wavelength. During the initial development of the vortices, only the
receptivity calculations are accurate. At streamwise locations where the free-stream disturbances
have fully decayed, the growth rate and wavelength are computed accurately by the eigenvalue
analysis, although the correct amplitude of the Görtler vortices can only be determined by the
receptivity calculations. It is further proved that the eigenvalue predictions of the growth rate and
wavenumber worsen as the Mach number increases, as these quantities show a dependence on the
wall-normal direction.

The neutral curves of the boundary-layer Görtler-vortex flow generated by free-stream dis-
turbances, i.e., curves that distinguish the perturbation flow conditions of growth and decay, are
computed through a receptivity study for different Görtler numbers, wavelengths, and low frequen-
cies of the free-stream disturbance. The perturbations are defined as Klebanoff modes or strong
and weak Görtler vortices, depending on their growth rate. The critical Görtler number below
which the inviscid instability due to the curvature never occurs is obtained and the conditions for
which only Klebanoff modes exist are thus revealed.

3 Scaling and equations of motion

We consider a uniform compressible air flow of velocity U∗∞ and temperature T ∗∞ past a slightly
concave plate with constant radius of curvature r∗. Hereinafter the asterisk ∗ identifies dimensional
quantities. In the proximity of the surface, the flow is described by the orthogonal curvilinear
coordinate system x = {x, y, z} that defines the streamwise, wall-normal, and spanwise directions.
The conversion from the Cartesian to the curvilinear coordinates system is achieved through the
Lamé coefficients hx = 1 − y∗/r∗, hy = 1, and hz = 1 (Wu et al., 2011). The flow domain is
represented in figure 1.

Small-intensity free-stream vortical perturbations are passively advected by the uniform free-
stream flow and are modeled as three-dimensional vortical disturbances of the gust type, which,
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Figure 1: Schematic of the boundary-layer asymptotic regions I, II, III, IV, FS and the receptivity
mechanism to free-stream vortical disturbances, where λx is the streamwise wavelength of the free-
stream disturbance and λx,bl is the streamwise wavelength of the boundary-layer perturbation q́
sufficiently downstream from the leading edge.

sufficiently upstream and away from the plate, have the form

u− i = εû∞ ei(k·x−kxRt̂) + c.c., (1)

where c.c. indicates the complex conjugate, ε is a small parameter, i is the unit vector along
the streamwise direction, and t̂ is the dimensionless time defined below. The wavenumber vector
k = {kx, ky, kz} and the amplitude of the free-stream velocity disturbance û∞ = {û∞, v̂∞, ŵ∞}
satisfy the solenoidal condition k · û∞ = 0. Lengths are scaled by Λ∗z = λ∗z/2π, where λ∗z is the
spanwise wavelength of the gust. As the flow is periodic along the spanwise direction and the
boundary-layer dynamics is linear because the perturbation is assumed of small amplitude, λ∗z is
also the spanwise wavelength of the Görtler vortices. Velocities are scaled by U∗∞, the temperature
is scaled by T ∗∞, and the pressure is scaled by ρ∗∞U

∗
∞

2, where ρ∗∞ is the mean density of air in the
free stream.

The Reynolds number is defined as R = U∗∞Λ∗z/ν
∗
∞ � 1, where ν∗∞ is the kinematic viscosity

of air in the free stream, the Görtler number is G = R2Λ∗z/r
∗ = O(1), and the Mach number

is defined as M = U∗∞/a
∗
∞ = O(1), where a∗∞ = (γR∗T ∗∞)1/2 is the speed of sound in the free

stream, R∗ = 287.06 J kg−1 K−1 is the ideal gas constant for air, and γ = 1.4 is the ratio of
specific heats. The dimensionless spanwise wavenumber is kz = 1 and the frequency parameter is
kxR = 2πΛ∗2z U

∗
∞/(λ

∗
xν
∗
∞). The streamwise coordinate and time are scaled as x̂ = x∗/(RΛ∗z) and

t̂ = U∗∞t
∗/(RΛ∗z), respectively, due to our interest in streamwise elongated perturbations.

We restrict ourselves to cases for which the highly-oblique Tollmein-Schlichting waves investi-
gated by Ricco and Wu (2007) do not occur.

3.1 Flow decomposition

The boundary-layer velocity, pressure, and temperature q = {u, v, w, p, τ} are decomposed into
their mean Q and perturbation q́ as q(x, t) = Q(x) + ε q́(x, t). Under the assumption r � 1, cur-
vature effects on the mean flow can be neglected (Spall and Malik, 1989). Consequently, at leading
order the mean flow behaves as if the plate were flat. The Dorodnitsyn-Howarth transformation
can then be applied to obtain the mean-flow momentum equation M and energy equation E in
similarity form (Stewartson, 1964) introducing the compressible Blasius function F = F (η), the
temperature T = T (η), and the dynamic viscosity µ(T ) = Tω, where ω = 0.76 (Stewartson, 1964).

The independent similarity variable is defined as η = Ȳ / (2x̂)1/2, where Ȳ (x̂, y) =
∫ y
0 1/T (x̂, ȳ)dȳ

3
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and the Prandtl number, assumed to be constant, is Pr = 0.707. The streamwise velocity U and
the wall-normal velocity V of the mean flow are

U = F ′, V =
T (ηcF

′ − F )

R(2x̂)1/2
, (2)

where ηc(η) = T−1
∫ η
0 T (η̂)dη̂ (Stewartson, 1964).

3.2 The compressible boundary-region equations with curvature effects

The theoretical framework used herein is a combination of the work of Wu et al. (2011) on incom-
pressible Görtler flows over concave surfaces with the work of Ricco and Wu (2007) on compressible
Klebanoff modes over flat surfaces. Both papers are extensions of the original theory developed by
Leib et al. (1999) for the incompressible flat-plate case.

The boundary-layer perturbations are assumed to be periodic in time t and along the spanwise
direction z. They are expressed as in Gulyaev et al. (1989),

q́(x, t) = ikzw̌

{
Rū, (2x̂)1/2v̄,

1

ikz
w̄,

1

R
p̄, Rτ̄

}
ei(kzz−kxRt̂) + c.c., (3)

where w̌ ≡ ŵ∞ + ikz v̂
∞(k2x + k2z)

−1/2 and q̄(x̂, η) = {ū, v̄, w̄, p̄, τ̄}(x̂, η). Starting from the full
compressible Navier-Stokes and continuity equations in curvilinear coordinate form, using the
Lamé coefficients and the scaling previously introduce we find the perturbation equations in which
(2) and (3) are substituted. Then, taking the limits R → ∞ and kx → 0 with kxR = O(1), the
LUBR equations with the appropriate initial and boundary conditions are obtained (Viaro and
Ricco, 2018b). Gulyaev et al. (1989), Choudhari (1996), and Leib et al. (1999) recognized that the
LUBR equations, complemented by rigorous initial and free-stream boundary conditions, must be
used to study the flow in region III and II of figure 1.

3.3 The eigenvalue equations with curvature effects

Because of the inviscid unbalance between the centrifugal force and the wall-normal pressure,
the Görtler instability exhibits an exponential streamwise amplification. Following the work of
Wu et al. (2011), we can take advantage of this property by adopting a simplified mathematical
framework based on an additional decomposition of the quantities defined in (3),

q̄(x̂, η) = {ū, v̄, w̄, p̄, τ̄} ≡ q̃(η) e
∫ x̂ σEV(x)dx, (4)

where q̃ = {ũ, ṽ, w̃, p̃, τ̃} and σEV = σEV, Re + iσEV, Im is a complex function whose real part σEV, Re(x̂) is
the local growth rate and the imaginary part σEV, Im(x̂) is proportional to the streamwise wavenum-

ber of the boundary-layer perturbation, i.e., kx, EV(x̂) = 1
x̂

∫ x̂
σEV(x)dx. Expression (4) is a local

eigenvalue (EV) decomposition, i.e., valid at a specified streamwise location, which implies that
the streamwise dependence of the perturbation is absorbed in σ(x̂), while the wall-normal variation
is distilled in q̃(η). The EV perturbation (4) is only defined within an undetermined amplitude
which can only be found through the receptivity analysis, i.e., by accounting for the influence of
the free-stream disturbance. Nevertheless, upon comparison with the LUBR solution, the EV ap-
proach identifies the streamwise locations where the perturbation exhibits exponential growth and
where its growth rate and streamwise length scale are not influenced by the initial and free-stream
boundary conditions.

By substituting (4) into the LUBR equations we obtain the non-parallel EV system of equations,
which preserves the growing nature of the boundary-layer mean flow. The equations can be further
simplified by invoking the η-based parallel mean-flow assumption, which implies V = 0, and by
taking the limit x̂� 1 (Wu et al., 2011). The non-parallel compressible EV equations are given in
Viaro and Ricco (2018b).

4
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3.4 Asymptotic analysis

We herein extend the asymptotic analysis of Wu et al. (2011) for G→∞ to the compressible case
with M = O(1). A summary of the physical results extracted through the asymptotic analysis of
this section is given in §3.4.1, while the complete theoretical derivation can be found in Viaro and
Ricco (2018b). Even though this theoretical analysis unveils crucial physical characteristics which
are not revealed by a purely numerical approach, it will become evident that the numerical solution
of the LUBR equations is nevertheless needed for a thorough understanding of the flow and for its
accurate computation, especially for G = O(1), where the asymptotic analysis is invalid.

3.4.1 Physical summary

From the asymptotic analysis in the limit of large Görtler number, we can infer the following
physical properties:

• as in the incompressible case, the unbalance between pressure and centrifugal forces triggers
the Görtler instability at a streamwise location x̂ = O

(
G−2/5

)
, i.e., when both the wall-normal

and the spanwise pressure gradients are active in the wall-normal and spanwise momentum
equations, respectively;

• in stage II, i.e., where the boundary-layer equations describe the flow as the spanwise viscous
diffusion effects are negligible, increasing the Mach number causes:

– the boundary-layer perturbation to intensify;

– the perturbation to shift away from the wall;

• in stage III, i.e., further downstream where the flow is described by the boundary-region
equations because the spanwise viscous diffusion and the spanwise pressure gradient are at
work:

– the growth rate decreases slightly downstream;

– increasing the Mach number has a stabilizing effect on the growth rate, which is more
intense in supersonic flow conditions ;

– for M = O(1), the vortices move towards the wall as the Mach number increases;

– we have obtained a composite asymptotic solution, whose near-wall part is fully viscous
and adiabatic, while the part in the boundary-layer core is inviscid.

3.5 Neutral curve parameters

The neutral curves are represented in the x̂-G plane by the parameters (Viaro and Ricco, 2018a)

ς(x̂) ≡ dE(x̂)

dx̂
, β(x̂) ≡ d2|ū(x̂)|max

dx̂2
, (5)

where E(x̂) ≡
∫∞
0 |ū(x̂, η)|2dη is the scaled perturbation energy divided by (2x̂)1/2 (Hall, 1990) and

|ū(x̂)|max ≡ max
η
|ū(x̂, η)| is the maximum along η = y/(2x̂)1/2 of the amplitude of the streamwise

velocity perturbation. This definition of ς(x̂) is well suited for the receptivity analysis since it
retains the information from the perturbation amplitude. The latter would not enter the picture if
the x̂-derivative of the energy were normalized by the energy itself, as in Hall (1990). Only the |ū|
component is used to define the scaled perturbation energy in (5) because the physical streamwise
velocity component for the Görtler vortices is much larger than the transverse velocity components
(Wu et al., 2011).

The flow is unstable for ς > 0 and stable for ς < 0, with ς = 0 defining the neutral points
located at x̂ = x̂ς0 . Since curvature effects are not at work near the leading edge, the boundary-layer

5
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perturbations start growing from the leading edge as Klebanoff modes, herein labelled K-vortices
K , for which ς > 0, β < 0. Depending on G, kxR and ky, K-vortices can either become stable

downstream of x̂ = x̂ς0 or turn into Görtler vortices at x̂ = x̂K, where β = 0 and β′(x̂) > 0, with
the prime indicating the derivative with respect to x̂. The Görtler vortices are characterized by
an initial strong growth, denoted by GS , for which β > 0 (GS-vortices). When β = 0 and β′ < 0
at x̂ = x̂G, the local growth rate is maximum and downstream their growth weakens as β < 0
(GW-vortices, GW ), until they eventually stabilize downstream of x̂ = x̂ς0 .

4 Numerical results

4.1 Unsteady boundary-region results

Using the LUBR equations, we investigate the dependence of the evolution of compressible Görtler
vortices on four main parameters, i.e., the Mach number, the Görtler number, the ratio of the
disturbance wavelengths in the free stream, and the frequency. In order to obtain realistic results,
this parametric analysis is based on wind tunnel data of compressible flows.

4.1.1 Effect of Mach number

The effect of the Mach number is investigated while keeping a constant unit Reynolds number
R∗u = U∗∞/ν

∗
∞. We consider the cases of steady vortices (f∗ = 0) in conditions similar to the

experimental configuration of De Luca et al. (1993), i.e., with spanwise wavelength λ∗z = 8 ·10−3m,
corresponding to R = 1273.2, and radius of curvature r∗ = 10m, corresponding to G = 206.4. The
Mach number is limited to M ≤ 4 to maintain valid the assumptions of ideal gas and constant
Prandtl number. The dimensionless wall-normal coordinate y99 ≡ y∗/δ∗99 is used when comparing
results at different Mach numbers.

We find that, for x̂ = O(1), increasing M decreases the growth rate, i.e., the kinematic Görtler
vortices (GV-vortices) become more stable, especially for supersonic flows. This confirms the asymp-
totic results for stage III and is true only sufficiently downstream from the leading edge where the
Görtler instability is fully developed and δ∗ is comparable with λ∗z. In the early stages of the
streamwise-velocity perturbation where instead the spanwise viscous diffusion is negligible, the
effect of the Mach number is reversed (not shown). This also confirms the theoretical results for
stage II. The stabilizing effect of the Mach number when δ∗ = O(λ∗z) is in accordance with early
studies utilizing linearized theories for the primary instability (El-Hady and Verma, 1983; Spall
and Malik, 1989). The most unstable Görtler vortices are therefore incompressible. However, this
is true only during the initial stages of the evolution as the recent experimental study by Wang
et al. (2018) showed that transition to turbulence is achieved more rapidly for compressible Görtler
vortices compared to the slower transition of incompressible Görtler vortices because the secondary
instability of nonlinearly evolving vortices is more intense in the compressible case.

In addition to GV-vortices, compressibility effects generate thermal Görtler vortices, hereinafter
called GT-vortices. They originate due to the velocity-temperature coupling within the boundary
layer even in the absence of free-stream temperature disturbances, similar to the thermal Klebanoff
modes over a flat plate (Ricco and Wu, 2007). Figure 2 (left) reveals that the temperature pertur-
bations also grow exponentially and are more stable sufficiently downstream, i.e., their growth rate
decreases, as the Mach number increases. However, thanks to our receptivity framework we notice
that in the proximity of the leading edge, where δ∗ is smaller than λ∗z, the temperature pertur-
bations increase much more significantly with the Mach number than the velocity perturbations.
We further note that the stabilizing effect of the Mach number occurs much further upstream
for the GV-vortices than for the GT-vortices. Since further downstream the growth rate decreases
with increasing M, temperature perturbations for lower M become dominant when x̂ is sufficiently
high. This reversed influence of compressibility caused by the growing presence of spanwise viscous
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Figure 2: The effect of the Mach number on the maximum temperature perturbation (left) on the
wall-normal location of GT-vortices (right) for a steady flow at R = 1273.2, G = 206.4 and ky = 1.
Inset: Boundary-layer thickness based on λ∗z = 8 · 10−3m, expressed in meters.

diffusion along the streamwise direction was also detected on thermal Klebanoff in the presence of
wall heat transfer (Ricco et al., 2009).

The location of the maximum value of the perturbation amplitude is monitored to identify the
wall-normal position of the Görtler vortices. Early studies by El-Hady and Verma (1983), and
Ren and Fu (2015) show that the vortices lift away from the wall as the Mach number increases,
although through EV approaches they could not trace the evolution of the vortices from the leading
edge because the external forcing due to the free-stream disturbances plays a crucial role there.
This effect of compressibility on Görtler vortices was also noticed by Spall and Malik (1989) and
Hall and Fu (1989). Previous studies have shown that in the limit of large Mach number the
vortices move into a log-layer near the free stream. However, as we focus on M = O(1), this lifting
effect of the Mach number is not intense enough and the vortices are only confined in the core of
the boundary layer. Thanks to our receptivity framework, we can follow the wall-normal location
of GV-vortices and GT-vortices as they evolve from the leading edge. Figure 2 (right) confirms that
by increasing the Mach number the GT-vortices occur at larger wall-normal locations, also true for
the GV-vortices (not shown). The effect of M is stronger on the GV-vortices than on the GT-vortices
and the GT-vortices are positioned closer to the free stream than the GV-vortices. The increase of
boundary-layer thickness δ∗99 with M is also shown in the inset of figure 2 (right).

As shown by Hall (1983) and Wu et al. (2011), incompressible Görtler vortices move closer to
the surface as they evolve downstream and they become confined in the wall layer region. This
behavior persists even for compressible flows as long as M < 3. For M ≥ 3 the vortices are not
confined near the wall but they evolve in the core of the boundary layer. The asymptotic results of
stage III, which are based on the assumption G� 1, cannot capture this behavior because vortices
tend to shift towards the wall as G increases for any Mach number when M = O(1).

4.1.2 Effect of Görtler number

In the context of steady vortices, we now analyze the effect of the Görtler number on the evolution
of perturbations for M = 2 and M = 4. Keeping R = 1273.2, radii of curvature r∗ = 5m and r∗ = 10m
give G = 412.8 and G = 206.4, respectively.

The evolution of the perturbation is characterized by the parameter β(x̂) ≡ d2|ū(x̂)|max/dx̂
2

(Viaro and Ricco, 2018a). Klebanoff modes, for which β < 0 due to their algebraic growth, first
develop near the leading edge. When curvature effects become important the perturbation shifts
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Figure 3: The effect of the Görtler number G on the maximum streamwise velocity perturbation
(left) and on the wall-normal location of GV-vortices at M = 4 (right) for a steady flow R = 1273.2
and ky = 1.

to Görtler vortices at a streamwise location x̂β where β = 0 and starts growing with β > 0. The
location x̂β decreases as G increases for all M and for subsonic conditions there is no Mach number
influence. For supersonic conditions and low enough G, x̂β increases with M, but x̂β becomes
independent on M in supersonic conditions if G is sufficiently large.

Klebanoff modes contribute to the initial growth of the perturbation and, for sufficiently small
Görtler numbers, i.e., G < 50 for M = 4, they stabilize after a certain streamwise location, as shown
in figure 3 (left). Only when G is large enough the instability is characterized by the more energetic
Görtler vortices. This is confirmed by the recent experimental study of Wang et al. (2018) where for
low G values only weak streaky structures are present but when G increases the Görtler instability
generates stronger vortices. We also noticed that GT-vortices are more unstable than GV-vortices at
M = 4 (not shown).

The location of GV-vortices is shown in figure 3 (right) for M = 4. When G increases the vortices
move closer to the wall whereas when M increases they move away from the wall. High Mach
number flows tend to behave more similarly to the flat-plate scenario.

The influence of the Mach number changes as the Görtler number increases. The asymptotic
analysis reveals that for G � 1 an increase of M makes the vortices move towards the wall. This
was also noticed by Dando and Seddougui (1993) and it is confirmed by the LUBR results for high
G. When x̂ is held fixed and M is subsonic or mildly supersonic and increases, the vortices shift
towards the boundary-layer core only when G = O(1). In addition, the position of the vortices as
x̂ = O(1) increases is affected by the Mach number being smaller or larger than 3 for G = O(1).

4.1.3 Effect of the free-stream wavelength ratio

The effect of the free-stream wavelength ratio ky = λ∗z/λ
∗
y can only be studied through the re-

ceptivity formalism because ky only appears in the initial and free-stream boundary conditions.
Figure 4 shows the effect of ky on the streamwise perturbation velocity (left) and the wall-normal
location of GV-vortices (right) for M = 4 and G = 206.4. The weak effect of ky increases at higher
Mach numbers (not shown). The flow becomes slightly more stable as ky increases, with the most
unstable configuration achieved for ky = 0. The growth rate of the streamwise velocity becomes
nearly constant for sufficiently high x̂. When the flow is more stable as ky increases, the vortices
initially tend to shift towards the wall but their wall-normal position becomes independent on ky
at sufficiently high values of x̂, as shown in figure 4 (right). Contrary to the effect of Mach number
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Figure 4: The effect of ky on the maximum streamwise velocity perturbation (left) and wall-normal
location of GV-vortices (right) for a steady flow at R = 1273.2, G = 206.4 and M = 4.

and Görtler number, the influence of ky on the wall-normal position of the vortices decreases as
the streamwise location increases. Spall and Malik (1989) also noted that, for different initial
conditions, the growth rates converged at sufficiently high scaled wavenumbers, i.e., sufficiently
downstream, and that this convergence occurs closer to the leading edge as G increased. The nor-
malized streamwise velocity and the temperature profiles experience no significant variations as ky
changes whereas the profiles of the crossflow velocities vary with ky but only at small streamwise
locations (not shown).

4.1.4 Effect of frequency

The effect of frequency at two different Mach numbers, M = 0.5 and M = 3, is investigated by
keeping a constant dimensionless wavenumber κ = kz/(kxR)1/2 = O(1) which, for x̂ = O(1), is
representative of the ratio δ∗/λ∗z = O(1), i.e., the spanwise and the wall-normal diffusion effects are
comparable. Flows at different Görtler numbers are also compared for r∗ = 5m and r∗ = 10m. For
the subsonic case the Görtler numbers are G = 2494.7 and G = 1247.3, whereas, for the supersonic
case, G = 479.4 and G = 239.7, respectively. The frequency is scaled as F ≡ f∗

R∗u U
∗
∞
, where the unit

Reynolds numbers are R∗u = 11·106 m−1 and R∗u = 2.18·106 m−1 for a subsonic case (Flechner et al.,
1976) and a supersonic case (Graziosi and Brown, 2002), respectively. For each Mach number, the
effect of frequency is studied by doubling and halving a reference frequency from wind tunnel
experiments for supersonic and subsonic flows. At M = 3, the reference frequency f∗ = 1000Hz
(F = 7.5 · 10−7) comes from the work of Graziosi and Brown (2002), which corresponds to the
maximum perturbation energy. Given that no experiments were found for M = 0.5, the reference
frequency f∗ = 250Hz (F = 1.32 · 10−7) was inferred from the knowledge of frequencies at very
low Mach numbers (Boiko et al., 2010), f∗max ≈ 20Hz, and at high Mach numbers (Graziosi and
Brown, 2002), f∗max ≈ 10kHz. This value additionally allows us to compare the same frequency,
f∗ = 500Hz, in the two Mach numbers considered.

Figure 5 (left) shows the stabilizing effect of increasing the frequency on the temperature
perturbation while keeping a constant radius of curvature r∗ = 5m. The stabilizing effect of
doubling the reference frequencies is stronger compared to the destabilizing effect of halving them,
for M = 3 and for M = 0.5, r∗ = 10m (not shown). The same conclusions can be drawn for the
maximum velocity perturbation |ū(x̂)|max, which also agree with the findings of Hall (1990) and
Ren and Fu (2015). Frequency plays an important role on the location of Görtler vortices. As the
main effect of increasing the frequency is to move the vortices away from the wall even for low
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Figure 5: The effect of the frequency F on the maximum temperature perturbation (left) and on
the wall-normal location of GT-vortices (right) for a plate with r∗ = 5m, ky = 1, G = 479.4 and
M = 3.

Mach numbers, e.g. M = 0.5, GT-vortices are not confined near the wall if the frequency is high
enough. At high Mach numbers, figure 5 (right) shows that the effect of frequency on the location
of GT-vortices is more intense and starts closer to the leading edge. GV-vortices are located closer
to the wall with a weaker dependence on the frequency than GT-vortices (not shown).

To summarize, Görtler vortices tend to move towards the boundary-layer core when the per-
turbation is more stable, i.e., as F or M increase, or G decreases. As ky increases, the perturbation
is slightly more stable and Görtler vortices tend to move closer to the wall.

4.2 Comparison with results from the eigenvalue analysis

Figure 6 shows the comparison between the growth rate (left) and the streamwise length scale ratio
(right) of the LUBR solution and EV solution. The most important point is that the receptivity
process selects the most unstable modes. The non-parallel EV solution (solid circles) is a better
approximation for the growth rate and the streamwise length scale than the parallel EV solution
(empty circles) at η = 2, where the growth rate is at its maximum. The non-parallel and parallel
EV formulations show the strongest disagreement with the receptivity LUBR solution closer to the
leading edge, where the solution has not yet acquired a modal form. In this region, the non-parallel
effects, and the initial and free-stream boundary conditions thus play a key role in the dynamics
of the perturbation. In the limit x̂→ 0 the EV solution is invalid, with the growth rate becoming
negative. Results show a tendency of the EV approach to overestimate the growth rate, which is in
agreement with the results of Spall and Malik (1989). The agreement between the LUBR solution
and the parallel EV solution is worse in the supersonic case than in the subsonic case. The use of
the rigorous receptivity LUBR framework becomes therefore essential for supersonic flows.

4.3 Downstream evolution of the disturbance energy

The scaled perturbation energy E(x̂) of both K-vortices and Görtler vortices, normalized by the
maximum value Emax,G0 ≡ max

x̂
|E(x̂)|G=0 for G = 0, is shown in figure 7 (left) as a function of x̂ for

kxR = 0 and ky = 2. Energy maxima, M1 and M2, and minima m identify stable conditions, i.e.,
where ς = 0. Three critical Görtler numbers occur for this configuration, i.e., GA, GB, and GC. In
the flat-plate case, for which G = GA = 0, only K-vortices are present. They start growing from
the leading edge and then dissipate rapidly due to viscosity (Leib et al., 1999). As the curvature
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is introduced, the imbalance between pressure and centrifugal forces energizes the boundary-layer
perturbation. Only for G > GB = 10.9 the Görtler vortices become unstable as secondary growing
disturbances after the viscous decay of the K-vortices. A new maximum M2 thus emerges. Following
the evolution of the perturbation for G = 12, figure 7 (left) shows that K-vortices represent the initial
instability of the boundary layer, which start stabilizing at M1. After the viscous decay, the onset of
the Görtler vortices causes the boundary layer to become unstable again at m. Their initial strong
growth GS shifts into a weak growth GW at x̂ = x̂G before ultimately stabilizing again at M2. In
the range GB < G < GC = 17 both instabilities are thus present. Figure 7 (left) also shows that for
G > GC the K-vortices turn into Görtler vortices directly without the intermediate viscous decay.

4.4 Neutral curves

4.4.1 Steady Görtler-flow scenario

The neutral curve for kxR = 0 and ky = 2 is shown in figure 7 (right). The continuous black
line represents the neutral curve, the black dotted line indicates the streamwise location x̂K where
K-vortices turn into Görtler vortices directly, and the black dashed line represents the streamwise
location x̂G where the growth of the Görtler vortices shifts from strong to weak. Three critical
points of the neutral curve, A, B, C, are shown in figure 7 (right). Point A indicates the x̂ location
downstream of which the K-vortices are stable for G = 0, while point B denotes the x̂ location of the
local minimum of the neutral curve, corresponding to the Görtler number (GB = 10.9) below which
only K-vortices exist. Point C indicates the x̂ location of the local maximum of the neutral curve
corresponding to the Görtler number (GC = 17) above which K-vortices shift directly to Görtler
vortices.

The neutral curve shows that K-vortices always exist near the leading edge for any Görtler
number and that increasing the Görtler number strengthens the inviscid nature of the Görtler
instability, thereby causing the unstable region to expand rapidly. As the curvature increases, the
point m, also shown in figure 7 (left), moves closer to the leading edge and eventually merges with
M1 for G = GC. For G > GC, the boundary layer is unstable from the leading edge as K-vortices turn
into Görtler vortices at x̂ = x̂K. If the perturbation energy were defined by integrating |ū| over y
for the definition of ς, the neutral curve would be slightly shifted to lower G but would retain its
shape.

4.4.2 Effect of frequency and wavelength ratio

Figures 8 show the influence of the frequency parameter kxR = Rλ∗z/λ
∗
x (left) and the wavelength

ratio ky = λ∗z/λ
∗
y (right) on the neutral stability curves. For all cases, the x̂K lines overlap for most

Görtler numbers (not shown) and, sufficiently downstream, the neutral curves become independent
of the initial conditions that are herein linked to the free-stream disturbances. Figure 8 (left)
shows that the stability region expands significantly as the frequency increases for free-stream
disturbances with equal transverse wavelengths λ∗z and λ∗y (ky = 1). Boundary-layer perturbations
generated by steady free-stream disturbances are therefore the most likely to turn into Görtler
vortices through inviscid instability. When kxR > 2, there is a range of Görtler numbers for which
the boundary layer becomes unstable again after an initial decay of Görtler vortices and before
entering the permanent stable region. This scenario is shown in figure 8 (left) for kxR = 6 and
G = 55. For higher frequencies, this phenomenon is even more accentuated as it occurs for a larger
range of Görtler numbers. However, we focus on low-frequency disturbances as these are the most
unstable and are fully consistent with our asymptotic framework, which is based on kx � 1.

The inset of figure 8 (left) shows the increase of the critical Görtler number GB with kxR. Results
for different ky are not shown as they overlap on the same curve due to GB being near the location
where the neutral curves are independent of ky.

Figure 8 (right) shows the influence of the wall-normal wavenumber ky for kxR = 0. The most
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Figure 8: Neutral stability curves ς = 0 for ky = 1 and different values of the frequency kxR.
Inset: variation of the critical Görtler number GB as a function of kxR for ky = 1 (left), and
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streamwise location x̂s where the neutral curve becomes independent on ky and the corresponding
Görtler number Gs for different frequencies kxR (right).

critical scenario is for ky = 0. As ky increases, i.e., as λ∗z becomes progressively larger than λ∗y,
stability increases near the leading edge for both steady and unsteady flows, whereas the neutral
curve becomes independent of ky downstream of a location x̂s, defined as the x̂ location where
the neutral points at different ky remain within a range ∆x̂ < 0.0005. This is in agreement with
the results of Hall (1990) at large x̂ locations. The streamwise location x̂s is shown as a function
of kxR in the inset of figure 8 (right). As the frequency increases, x̂s decreases and it becomes
nearly independent of the frequency for kxR > 10. The Görtler number Gs associated with x̂s
increases monotonically with kxR. Based on the experimental conditions of Boiko et al. (2010),
x̂s = 10 corresponds to x∗ ≈ 22m, which means that the independence of the neutral curves on ky
is not reached in realistic scenarios. As ky only occurs in the free-stream boundary conditions at
leading order, this further confirms the crucial importance of solving the receptivity problem, i.e.,
of precisely specifying the free-stream disturbance, for the correct description of the Görtler-flow
dynamics.
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P. Hall. The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech.,
130:41–58, 1983.
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